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Abstract − In this paper, an approach to couple higher-order 
electromagnetic surface integral equations to circuit simulations 
is presented. Terminals are defined that connect circuit elements 
to contacts modeled on the distributed electromagnetic domain. A 
modified charge-current continuity equation is proposed for a 
generalized KCL connection at the contacts. The distributive 
electromagnetic integral equations are developed using higher-
order bases and elements that allow both better convergence and 
accuracy for modeling. The resulting scheme enables 
simultaneous solution of electromagnetic integral equations for 
arbitrarily-shaped objects and SPICE-like modeling for lumped 
circuits, and permits design iterations and visualization of the 
interaction between the two domains. 

1 INTRODUCTION 

Surface integral equation formulations are desirable 
for simulating packaging and interconnect structures 
due to the related ease in modeling arbitrary 
geometries and equivalent current flow [1]. 
Specifically, the Rao-Wilton-Glisson (RWG) approach 
[2] based on triangular surface tessellations permit 
modeling of arbitrarily shaped structures and 
arbitrarily directed equivalent surface currents. These 
forms of modeling are particularly useful for package 
and system-on-chip simulation and can also enable 
tightly coupled circuit and electromagnetic simulation 
[3]. 

At high frequencies, surface impedance 
approximations are sufficiently accurate to model 
losses and inductive behavior caused by skin effects. 
However, at lower frequencies approaching DC, cross 
sections of conductors are smaller than the skin depth. 
Standard surface impedance approximations are 
invalid. Therefore, for broadband simulation as 
necessitated in digital or ultra-wideband systems, a 
volumetric formulation is typically required at these 
low frequencies. In a volumetric formulation, the skin 
effect can be modeled explicitly. This modeling 
requires fine and frequency dependent volume 
meshing. It is noted that some recent efforts have been 
aimed at obtaining new surface impedance 
approximations that might be valid at low frequencies. 
These are typically restricted to cases of assumed or 
uniform cross sections [4] as opposed to more general 
three-dimensional structures, such as packages and 
on-chip inductors. 

Handling a mix of full-wave and skin-like effects 
with a surface-only formulation is desirable since 

frequency-dependent effects can be tracked without 
changing geometric discretization and without 
making recourse to a special volume formulation at 
low frequencies. This is particularly true for small 
microelectronic structures where geometry detail and 
not wavelength is the guiding factor in mesh 
discretization. To accomplish a surface-only 
formulation valid for realistic conductors over a broad 
range of frequencies, the interior lossy medium EM 
problem must be addressed and coupled to the 
external medium model. This can be accomplished 
using the PMCHWT formulation [1,5]. 

The intent in this paper is to develop the 
formulation necessary to use higher-order basis and 
element representations to provide better resolution 
and accuracy for the modeling of integrated circuit 
(IC) and packaging problems. This will be described 
in terms of a tightly coupled circuit and PMCHWT-
based electromagnetic simulation. In the next section, 
the integral equation formulation, as employed in 
EIGER [6], is briefly presented, including the higher-
order basis and element representations. In section 
three, the coupled PMCHWT-Circuit formulation is 
developed. Finally, some results and conclusions of 
the formulation are presented in terms of circuit 
elements coupled to these higher-order integral 
equations. 

2 INTEGRAL EQUATION FORMULATION 

Since we are dealing with penetrable bodies in this 
paper, the scattered electric and magnetic fields are 
represented in terms of the external and internal 
mixed potential integral equations (MPIE) as 
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Figure 1: A penetrable body that is in space. 

 
where E+ and E- are the electric fields of the exterior 
and interior regions, respectively, as shown in Fig. 1. 
The magnetic fields in (2) are represented in a similar 
way. The potentials in (1) and (2) are given by 
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where G(r,r´) is the homogeneous Green’s function, 
J(r) and M(r) are the surface electric and magnetic 
currents, respectively. The electric and magnetic 
surface currents are expanded in a series of linearly 
independent basis functions as 

 

1

( ) ( )
JN

n n
n

J
=

≈ ∑J r rΛ                        (7) 

and 

1

( ) ( ),
MN

n n
n

M
=

≈ ∑M r rΛ                    (8) 

where the Jns and Mns are the unknown surface 
current coefficients, NJ and NM are the number of 
unknown electric and magnetic currents, respectively, 
and the Λns are the basis functions. 

2.1  Basis Function Representation 

The surface of interest is discretized into triangular 
surface patch elements and/or quadrilateral surface 
patch elements. The basis functions on an element are 
represented in terms of Sylvester-Lagrange 

polynomials as presented in [7]. For example, the 
divergence conforming bases on a triangular element, 
such as that in Fig. 2, are written as  
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where p is the basis order, ξβ is the local coordinate,  
ˆijkα is the product of modified Sylvester polynomials, 

and Λβ is the zeroth-order basis.  The remaining terms 
are described in detail in [7]. The divergence of (9) is 
given by 
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where J is the Jacobian of the element. 

2.2  Element Representation 

It should be noted that the element geometry may be 
interpolated using the Sylvester-Lagrange 
polynomials, too. The expression for finding a point 
on an element is simpler than the bases and is 
represented as 

( ),ijk ijk
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where αijk is the product of the Sylvester polynomials 
and rijk is the interpolation point on an element. Also, 
if the mesh file format is based on the ordering of the 
local coordinates, then no element mappings are 
required for each element interpolation order (q). 
Hence, higher-order elements may be utilized without 
needing a unique mapping for each element and its 
particular interpolation order. 

 
Figure 2: The quantities associated with a quadratic 
(q=2) triangle. 
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2.1.2 Circuit -Connection Algorithm 

The contact-connection algorithm [1] is employed to 
couple the circuit to the electromagnetic surface. A 
circuit is attached to a spatially localized surface Sc by 
enforcing at this contact a modified current-continuity 
equation, a KCL connection, and a KVL connection 
from the contact to the circuit node. This is shown in 
Fig. 3. These three conditions are fundamental to the 
coupled PMCHWT-Circuit formulation. On a contact 
surface Sc, the continuity equation is changed to 
account for injecting branch current from the circuit. 
This current introduces an additional source term in 
the continuity equation and thus affects the 
distribution of both the electromagnetic surface 
currents and surface charges. Hence, the continuity 
equation is modified to become 
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where Ic is the contact current. This contact current 
provides a virtual extension from the distributive 
electromagnetic surface to the circuit node. The 
coupling between the electromagnetic formulation and 
the circuit is done by enforcing (1) and (2) at the 
boundary and coupling them to the circuit by 
including the contact current from (12). The localized 
circuit source attached to the contact produces an 
additional source or sink of charge that alters the 
scalar potential and the resulting electric field. 
Because of this additional current, the scalar 
potentials must be tied to the circuit node voltage Vn. 
A KVL expression sets the scalar potentials at the 
equipotent circuit voltage Vn. Finally, the contact 
current is connected to the circuit by including an 
addition term Ic to the KCL based circuit equation 
associated at circuit node n. 
 

 
Figure 3: This is the connection scheme for the 
contact-circuit algorithm.  
 

The PMCHWT-Circuit formulation, including the 
connecting KCL and equipotential KVL equations, 
may be summarized as the following block-matrix 
equation: 
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ckt
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where the EM block matrix represents the PMCHWT 
equations and contacts, the X and XT block matrices 
are the connection matrices between circuit nodes and 
contacts, the MNA block matrix represents the 
modified nodal circuit analysis, and I represents the 
currents. 

3 RESULTS 

A rectangular connector (1 mm × 1 mm × 4 mm) is 
modeled to determine the convergence of the 
resistance curve around the first resonance of the 
structure. The results shown in Fig. 4 are for the 
p = 0, 1, and 2 basis function orders. The results are 
essentially converged only after using the next higher-
order basis (p = 1) from the p = 0 (RWG) basis 
function order. 

 
Figure 4: A plot of the resistance versus frequency for 
a rectangular connector.  

4 CONCLUSIONS 

A brief description of the PMCHWT formulation was 
presented along with the higher-order elements and 
basis functions used in the analysis. A technique for 
representing circuit-to-EM connections was utilized in 
the analysis. Results were presented to demonstrate 
the usefulness of using higher-order formulations. In 
the specific example presented, only the next order 
basis function beyond the RWG basis was needed for 
convergence to occur. 
 
 

 

 



Acknowledgments 

This work was partially supported by DARPA-MTO 
NeoCAD grant N66001-01-1-8920. 
 
This work was performed under the auspices of the 
U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory 
under Contract W-7405-Eng-48.  

 References 

[1] V. Jandhyala and C. Yang. “A time domain 
surface integral technique for mixed 
electromagnetic and circuit simulation,” Proc. 
IEEE meeting on Electric. Perf. of Electron. 
Packaging, San Jose, October 2002, pp. 41–44.  

[2] S.M. Rao, D.R. Wilton, and A.W. Glisson, 
“Electromagnetic scattering by surfaces of 
arbitrary shape,” IEEE Trans. Antennas and 
Propagation, vol. 30, No.3, pp. 409–418, May 
1982.  

[3] A. E. Ruehli, “Equivalent circuit models for three 
dimensional multiconductor systems,” IEEE 
Trans. Microwave Theory Tech., vol. 22, pp. 216–
221, Mar. 1974. 

[4] S.M. Rao, Time Domain Electromagnetics, 
Academic Press, San Diego, CA, 1999. 

[5] J.R. Mautz and R.F. Harrington, “Electromagnetic 
scattering from a homogeneous material body of 
revolution,” Arch. Elek. Übertragung., vol. 33, no. 
2, pp. 71–80, Feb. 1979. 

[6] R.M. Sharpe, J.B. Grant, N.J. Champagne, W.A. 
Johnson, R.E. Jorgenson, D.R. Wilton, W.J. 
Brown, and J.W. Rockway, “EIGER: 
Electromagnetic Interactions GEneRalized,” 1997 
IEEE AP-S International Symposium and North 
American URSI Radio Science Meeting, Montreal, 
Canada, July 1997, pp. 2366–2369. 

[7] R.D. Graglia, D.R. Wilton and A.F. Peterson, 
“Higher order interpolatory vector bases for 
computational electromagnetics,” IEEE Trans. 
Antennas and Propagation, vol. 45, No.3, pp. 
329–342, Mar. 1997. 

 


